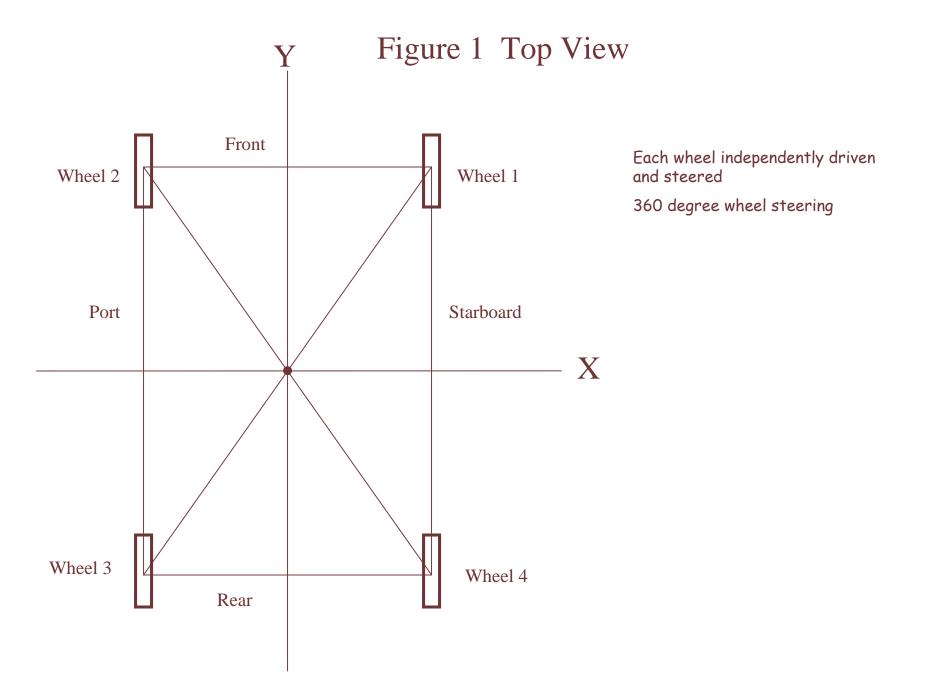
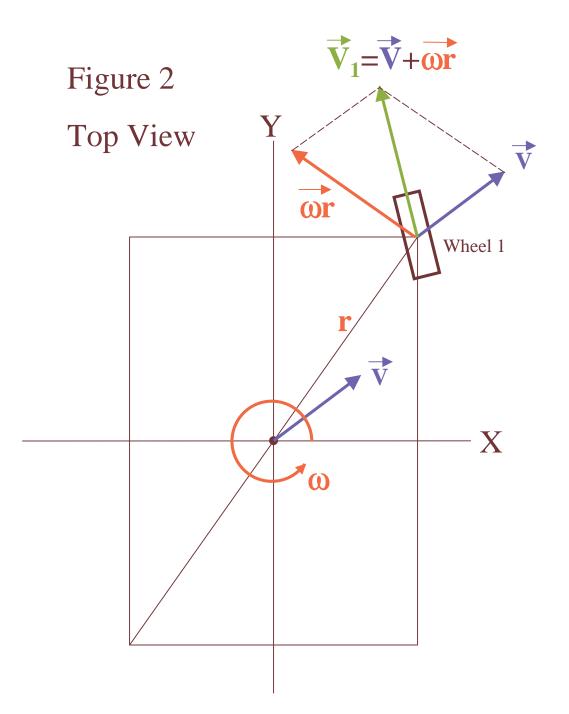
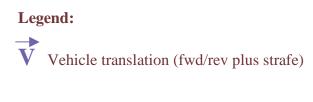
Derivation of the inverse kinematics (calculation of wheel speeds and wheel angles) for three-degree-of-freedom control of vehicle with four-wheel independent drive and independent steering (sometimes a.k.a. "Swerve" drive)







 $\begin{array}{c} \textcircled{0} & \text{Vehicle rotation } ^{1} \\ \overrightarrow{V}_{1} & \text{Wheel#1 direction and velocity } ^{2} \end{array}$

¹omega is radians/sec and is positive clockwise. The example in this diagram is a negative (counterclockwise) vehicle rotation. The formulas in Figure 6 for the wheel steering will give clockwise angles in degrees.

²calculated separately for each of the 4 wheels from the vehicle translation and rotation

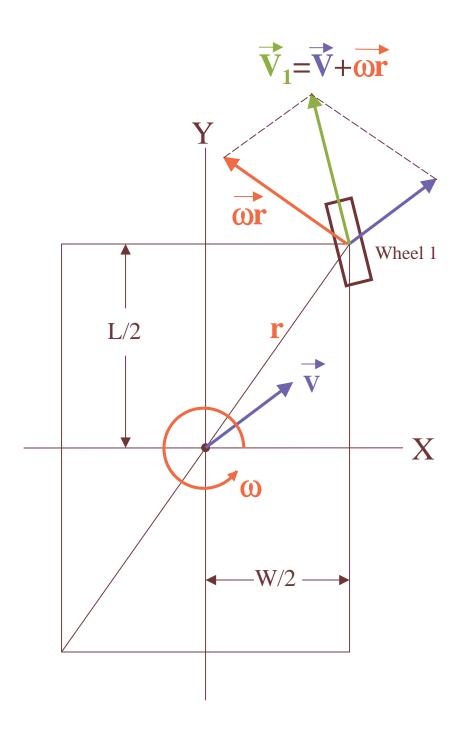


Figure 3 Top View

$$V_{1x} = V_x + (\omega r)_x = V_x + \omega L/2$$
$$V_{1y} = V_y + (\omega r)_y = V_y - \omega W/2$$

 V_x is the X component of \vec{V} V_y is the Y component of \vec{V} $(\omega r)_x$ is the X component of $\vec{\omega r}$ $(\omega r)_y$ is the Y component of $\vec{\omega r}$

L is the wheelbase

W is the trackwidth

 $\mathbf{r} = \operatorname{sqrt}(L^2 + W^2)/2$

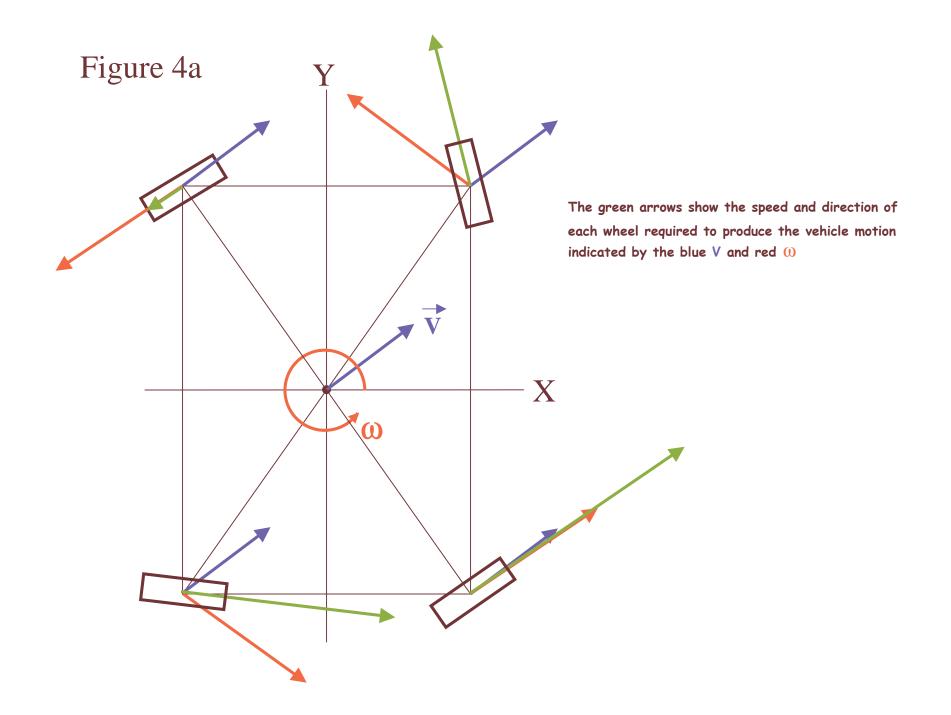


Figure 4b Wheel 2 Wheel 1 $V_{2x} = V_x + (\omega r)_x = V_x + \omega L/2$ $V_{1x} = V_x + (\omega r)_x = V_x + \omega L/2$ $V_{2v} = V_v + (\omega r)_v = V_v + \omega W/2$ $V_{1v} = V_v + (\omega r)_v = V_v - \omega W/2$ Wheel 3 Wheel 4 $V_{3x} = V_x + (\omega r)_x = V_x - \omega L/2$ $V_{4x} = V_x + (\omega r)_x = V_x - \omega L/2$ $\mathbf{V}_{3\mathbf{v}} = \mathbf{V}_{\mathbf{v}} + (\mathbf{\omega}\mathbf{r})_{\mathbf{v}} = \mathbf{V}_{\mathbf{v}} + \mathbf{\omega}\mathbf{W}/2$ $V_{4v} = V_v + (\omega r)_v = V_v - \omega W/2$

Figure 5

Define A, B, C, & D as follows: $A = V_x - \omega L/2$ $B = V_x + \omega L/2$ $C = V_y - \omega W/2$ $D = V_y + \omega W/2$... and the chart from Figure 4b becomes:

Wheel 2Wheel 1 $V_{2x} = B$ $V_{2y} = D$ $V_{1x} = B$ $V_{1y} = C$ Wheel 3Wheel 4 $V_{3x} = A$ $V_{3y} = D$ $V_{4x} = A$ $V_{4y} = C$

Figure 6

Calculate the speed and angle of each wheel	
Wheel 2	Wheel 1
speed = sqrt($B^2 + D^2$)	speed = sqrt($B^2 + C^2$)
<pre>angle = atan2(B,D)*180/pi</pre>	<pre>angle = atan2(B,C)*180/pi</pre>
Wheel 3	Wheel 4
Wheel 3 speed = $sqrt(A^2 + D^2)$	Wheel 4 speed = $sqrt(A^2 + C^2)$

1] Angles range from -180 to +180 degrees CW; zero is straight ahead

2] If, after calculating the 4 wheel speeds, any of them is greater than 1, then divide all the wheel speeds by the largest value.

3/28/2011 revision

- 1) Revised for CLOCKWISE ANGLES (for wheel steering θ and vehicle rotation ω)
- 2) Redefined L & W as full wheelbase and trackwidth
- 3) Vehicle rotate command is now in radians/sec instead of linear dimensions